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A new stochastic renormalization approach to random 
processes with very long memory: fractal time as a process with 
'almost' complete connections 

Marcel Ovidiu Vladt 
Institut fCr FestkBrperfarschung, Forschungszentrum Jiilich, W 5l70JClich, Federal Repub- 
lic of Germany 

Received 18 July 1991 

Abstrscl. An attempt is made to apply the mathematical theory of random jump processes 
with complete connections to the physically oriented description of very long memory 
effects. A new stochastic renormalization approach is introduced. Starting from a stochastic 
process with infinite memory, we attach to each step a very small probability that the 
memory is lost. As a result of this change the memory acts over a variable number of steps, 
farming 'blacks' of different sizes. This renormalization procedure leads to the self-similarity 
of the probability of the number of steps over which the memory is kept. The model yields 
a new explanation far the fractal time. 

The random processes with complete connections (RPCC) were introduced by 
mathematicians a long time ago (Onicescu and Mihoc 1937). Such processes have been 
applied to  many problems in biology and psychology (Iosifescu and Grigorescu 1989); 
they are almost unknown within the theoretical physics community. Physicists, however, 
are very interested in the description of memory effects merely in connection with 
polymer physics, normal and exotic diffusion, dynamics of growth processes, diffusion- 
limited aggregation, kinetic critical phenomena, etc. (Haus and Kehr 1978,1979, Kutner 
1985, Pietronero and Sibesma 1987, Peliti and Pietronero 1987, Shlesinger and Klafter 
1989). At first sight it would seem that the RPCC theory is of little interest to physicists. 
It is a rather formal theory based on the assumption that a system remembers all its 
previous history. By assuming that a system is described by a set of random variables 
X = (X"), X(* ' ,  . . .) the dynamics of the process is described by a succession of jump 
events X,+X, + X,+ X,+X,+. . . . The probability T. dX. of transition between two 
successive states X+, , X, depends on Xn-l, X. as well as on all preceding states 
x,, x, , . . . , x"-, : 

T.dX,=T.(X,,X, , . . . ,  X.-,+X.)dX, (1) 

T. dX. = 1. (2) J 
From the physical point of view, however, it is more plausible to assume that not 

all physical realizations of the process have infinite memory. This fact is suggested by 
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the scaling behaviour displayed by many physical phenomena (Pietronero and Sibesma 
1987, Peliti and Pietronero 1987). That is the reason why we shall introduce a new 
type of stochastic process by assuming that for each jump there is a very small 
probability p that the memoFy is lost. The complementary value A = 1 - p is the 
probability that the memory is kept. This change defines a kind of 'stochastic renormaliz- 
ation' which leads to a self-similar behaviour. In this case the different realizations of 
the process consist of 'blocks' of jumps over which the memory is kept. The number 
of jumps from a given block is itself a random variable. Thus, we can introduce the 
joint probability 

en (X0 ,  X,, . . . , X,,; 9) dX, dX, . . . dX, (3) 

that after 9 jump events the memory acts over n preceding states and that the 
corresponding state vectors are between X, and Xo+dXo,. . . , X, and X,, +dX.. By 
taking the above hypotheses into account we can deduce the evnlutinn equation: 

@"(XO,X,,. . . , x " ;  9 )  

= ( I  -Sno)AnTn(Xo,. . . ,Xn-~+Xn)@n-i(Xo, . . . ,Xn-i; 9-11 

+S,, ( l - A n , + l )  . . _  @o,.(X& ,..., X;;q- l )  
" ' 2 0  I I  

xT,.+,(Xb ,..., XL .+ X,)dXb ... dXL, (4) 

where A = A n  is the probability that at the nth jump from a block the memory is kept. 
Equation (4) could be considered as the renormalized expression corresponding to an 
RPCC. We note that for A. = 1 and q = n we recover the non-renormalized case. Solving 
equation (4) is rather difficult and beyond the scope of the present paper. The detailed 
analysis of this equation will be the subject of our future investigations. Some general 
features of the model can be investigated without solving the equation (4). We introduce 
the probability 

cn(q)=  _ _ _  @,dX, . . .  dX. I I  
that after q jumps the memory acts over n preceding steps. By integrating each term 
of equation (4) over X,, . . . , X. we get a closed equation in 5,,(9): 

Unlike the initial equation in On the reduced equation (6) is Markovian. It is easy to 
show that the solution &(9 )  of equation (6) evolves towards a persistent form: 

( 7 )  

e:= (1 - A n + , ) A n . .  . A ,  g=1- A , .  (8) 

^I "-m a.Jy-- t 1 - 1  . t S L  
5" I Y  I - 5 n  

where 

The physical interpretation of equation (8) is clear. The persistent probability #: can 
be expressed as a product of the probabilities A , ,  . . . , A. and 1 - A . + ]  that the memory 
is kept after the first n jumps and is lost after the occurrence of the (n + 1) one. 

The renormalization procedure depends on the choice of probabilities A I ,  A 2 , .  . . . 
We asume that the block generation takes place in a hierarchical manner, i.e. that the 
elementary jumps are lumped into blocks, the blocks into blocks of blocks, etc. The 
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number I of successive lumping events generating a certain block is itself random. 
Denoting by c the probability that the memory is kept after a lumping event A n  can 
be evaluated as a mean over all possible values of the lumping events: 

m 

A. = 1 c ' d n )  (9) 
I = I  

where q , ( n )  is the probability that a block of n jumps is the result of I lumping events. 
Denoting b y  b the probabiiity that a iumping event corresponds to an eiementary jump 
from a given block, we have 

(10) 

(11) 

F l ( n )  = (1  - b")(b")'-l.  

A,(c, b) = ~ ( 1 -  b " ) / ( l  -cb"). 

By evaluating the sum (9) we get 

As we are interested in the study of very long memory we shall consider the limit 
c, b + 1. We shall assume that the ratio 

H =In c/ln b (12) 

remains constant. We note that H is a kind of 'fractal exponent' attached to the lumping 
process. We get 

A , =  lim A,(c ,b)=n/ (n+H) .  (13) 
c,b+ 1.H =const 

Inserting equation (13) into equation (8) we get the following expression for c:: 
6; = Hr( H + l ) n  !/r( H +  n + 2) (14) 

where r(z) =I: y*-I exp(-y) dy is Euler's complete gamma function. If 1 > H > 0 all 
moments (n), (n'), . . . , corresponding to equation (14) are infinite and the asymptotic 
behaviour of 6;' is described by a statistical fractal 

[;= m ( H +  l ) n - ( ' + H 1  as n+m.  (15) 

The above considerations can be extended to the more general case when the 
lumping process starts from small blocks of random size no described by a certain 
probability law q (no) ,  where all moments of no are finite. The above-mentioned situation 
corresponds to v( no) = a,, , i.e. the lumping process starts from isolated jumps. For 
an arbitrary distribution ? ( n o )  the resulting distribution #: can be expressed as a sum 
over all possible values of no: 

C'= I: T ( n o ) A * . . . A " ( l - L + i )  
n O * l  

= 1 q( n o ) H T ( H  + n o ) n ! / ( r ( H +  n + 2 )  ( n o -  l ) ! ) .  (16) 
n D a l  

The asymptotic behaviour is similar to that predicted by equation (14). For 1 > H > 0 
all moments ( n ) ,  (n') ,  , , . are infinite and we have 

[;= Hn-"+H1 I: q ( n o ) r ( H + n , ) / ( n , - l ) !  asn+oo. (17) 

Now we can evaluate the distribution $"(t) of the time interval I within which the 
memory is kept. For simplicity we shall assume that all jumps take place with the 
frequency a, irrespective of the values of the state vectors XI, X,, . . . . It turns out 
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that the time between two jumps is exponentially distributed and $P( 1 )  is simply equal 
to 

m 

$ " ( I ) =  z ci(0 exp(-slr)@)"' (18) 
n =o 

where 0 denotes the temporal convolution product. After some calculus we get 

where r(z, x) = 
for 1 > H > 0 the asymptotic behaviour is described by a statistical fractal, 

y'-l exp(-y) dy is the incomplete gamma function. As expected, 

whereas for f + 0 we get an exponential dependence modulated by a polynomial in t 

(21) $st(t) = e-"'H 1 [(no- 1)!]-'7(nn) ( H  + n,)-'W"f''-' as t+0.  
no*, 

The above self-similar construction of the probabilities A, leads to a statistical 
fractal behaviour for the number of steps n or the time f over which the memory acts. 
The physical significance of this self-similarity is clear: there are many blocks of jumps 
ranging from very small to very large ones. For low n, A* may be relatively small 
whereas, as n + 00, An increases towards unity. The compensation of these two opposite 
factors generates a large variety of blocks leading to the lack of a characteristic memory 
scale. 

Within this paper we have analysed only the way in which the memory is lost. 
However, the self-similar structure of the model leads to a self-similar behaviour of 
the joint probability densities. Although small, the loss of the memory allows the joint 
probability densities to evolve towards time-persistent forms, even if this is not true 
for the non-renormalized model. We can distinguish a discrete time description, which 
can be done in terms of equation (4), or a continuous time description, which could 
be analysed by generalizing the multistep analogue of the continuous-time random-walk 
theory (Shlesinger and Klafter 1989) or the method of age-dependent master equations 
(Vlad and Pop 1989). Work on this problem is in progress and will be presented 
elsewhere. 

Another problem which should be clarified is the relationship with other stochastic 
renormalization theories. Recently, we have introduced a new class of stochastic 
renormalization approaches (Wad 1992) based on an assumption similar to the one 
used here: the renormalization is described as a clustering ofjumps. Although the two 
ideas seem to be similar, there are many differences. The above-mentioned formalism 
is not directly related to the long memory and the distribution of the cluster size is 
evaluated in a different way. The predicted results are also different. In particular, 
unlike the case of our approach the asymptotic behaviour of cluster size distribution 
is described by an inverse power law modulated by a periodic function of the logarithm 
of the cluster size. The logarithmic oscillations occur frequently within the framework 
of stochastic renormalization (Cassandro and Jona Lasinio 1978, Shlesinger and 
Hughes 1981). At the present stage of our research it is not clear why they are absent 
in the case of our model. 
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